Communication of Complex Data Structures

Stu-Yuen Chan

School of Computing Science
Queensland University of Technology
Brisbane, Queensland, 4001
Australia

si.chan@student. qut.edu. au

Abstract

Communicating complex data structures, that is
those containing pointers, across machines is a
common problem in distributed and parallel com-
puting; particularly with the current move towards
object-oriented programming. Some techniques
utilise dedicated hardware and system software to
efficiently achieve this. This paper presents a study
of several software techniques for the communica-
tion of compler data structures. A selection of
packing/unpacking techniques are tried and com-
pared; in addition a mini-heap ADT, requiring no
packing or unpacking, is studied.

1 Introduction

Parallel computing is currently a hot topic in
computing. The basic driving force of parallel
computing is the desire and prospect for increased
performance over conventional sequential comput-
ing. Of particular interest to us is network
based parallel computing and the idea of creating
a virtual supercomputer from networks of idle
workstations [3].

Over the past decade the development of par-
allel computing has shifted from processors with
physical shared memory to machines with dis-
tributed memories. Shared memory as an inter-
processor communication technique is not directly
supported by distributed memory machines. In-
stead, distributed shared memory (DSM), which
is the abstraction of shared memory on multi-
computer architectures, has been developed for
parallel systems of this type. However, generally
DSM requires hardware, specialised OS support or
at least a homogeneous collection of processors;
none of which are available for our virtual super-
computer.

Message-passing is another common interpro-
cessor communication technique and is naturally
supported by distributed memory machines. Sun
developed XDR, to communicate commonly used
simple and structured data types in RPCJ[2]. The
Mach distributed operating system tags each item
of rdataminanmessagenwithmitsatype [1]. How-

Paul Roe

School of Computing Science
Queensland University of Technology
Brisbane, Queensland, 4001

Australia

p.roeQqut. edu.au

ever, neither of these message passing systems
directly support the communication of complex
data structures containing pointers. This paper
investigates high level message-passing, in particu-
lar the tradeoffs involved in different techniques for
communicating complex data structures contain-
ing pointers. This is becoming increasingly neces-
sary with the move towards object-oriented (OO)
parallel programming: objects by their very nature
utilise pointers. Several other researchers have
investigated this tricky problem including Toyn[§]
and Newcomer[6]. The efficiency of Toyn’s binary
transfer relies on the existence of copying garbage
collector. Newcomer’s algorithm was designed for
IDL objects running on distributed systems. Our
investigations seek general solutions for the com-
munication of complex data structures for parallel,
rather than distributed, computing.

There are two basic issues involved in the com-
munication of complex data structures containing
pointers:

1. compaction of data for efficient communica-
tion and

2. relocation of data (pointers).

Typically it 18 much more efficient to commu-
nicate a block of contiguous memory between pro-
cessors than to communicate multiple fragments
of memory: for example as separate communica-
tions. Basic data types, arrays and records have
a contiguous representation in memory and are
relocatable (providing they contain no pointers).
However, usually complex data types such as linked
lists are incrementally constructed and hence are
not contiguously allocated in memory. They also
contain pointers which typically will not be valid
on the destination processor.

The techniques investigated address these is-
sues in different ways. The most straightforward
technique is to pack data on communication into
a buffer and simultaneously compute relocation
information. The buffer and relocation informa-
tion are communicated. On receipt the data is
unpacked and relocation information is used to

www.manaraa.com

reallocate data at different locations in memory.
We term this technique packing/unpacking; several
variations of this are investigated in the following
section.

An alternative technique is to build and main-
tain data in a compact and relocatable form; the
mini-heap ADT, described in Section 3 implements
this. The system implement the management
of a number of mini-heaps, into which complex
data to be communicated is built. It is similar
to the collection of the Fuclid and Turing [5]
programming languages. When a communication
request 1s raised, the whole block of mini-heap data
can be directly communicated. This is restricted
to communication across homogeneous machines.

2 Packing and unpacking

To generalise packing and unpacking, first we
assume all complex data structures containing
pointers can be represented by a directed graph.
Secondly, we consider only rooted, connected and
finite graphs. Under these assumptions, the nodes
of a graph represent data records and the edges of
a graph denote the pointers that reference those
records. To be more general, a graph may contain
different types of nodes, i.e. each node of the
graph may contain different types of data and have
different number of pointers to other nodes of the
graph. To achieve this, a tag is given to each node
of the graph to distinguish its node type. All the
implementations discussed in the following sections
are based on these assumptions.

2.1 Thread safety

Thread safety is an important issue when consid-
ering different approaches to communicating com-
plex data structures. Different packing/unpacking
approaches support different levels of concurrency,
and require different locking strategies. A min-
imum requirement is that no thread writes to a
graph while another thread packs the graph. We
classify the concurrency of access to the graph to
be packed thus:

1. There 1s no change to the graph, other threads
can read or pack the graph.

2. Other threads can read, but not pack, the
graph. (This requires an additional mode of
locking for graphs: ‘being-packed’.)

3. No other threads can access the graph while
it 1s being packed.

2.2 Technique I: node marking

The first approach that we used was to pack and
unpack graphs based on the technique described
by Griesemer [4]. In this approach, a buller is

used to accumulate the packed graph and a mark is
given as an extra field to each node in the graph.
The graph is traversed and packed into a buffer
for transmission. The purpose of node marks are
to mark whether nodes have been reached before
in the traversal, and if so at what point in the
traversal they were first encountered. All the
node marks are initialised to zero. During graph
traversal, nodes or references to previously packed
nodes are written into the buffer. If 1t is the
first time that a node is reached, its tag and data
values are written to the buffer. Also the traversal
sequence number is written to the mark of the node
in the graph. If the node has been reached before
(its mark is non-zero) the negative value of the
mark is written to the buffer: denoting a reference
to a previous node in the buffer. When a graph
is rebuilt, graph nodes are recreated according to
nodes’ tag values. If a negative value appears after
all the data items of a node, we know this node has
a reference to a previously created node.

Hi
tag Lpuarke=]

data = 5,12
Tk
HZ g
tigd k=3
data =134
1k
Ha & K3
tagt prurk=3 1425 prarke=
da= 13 6 data= 3
ik 1k

Figure 1: Ezample graph data structure.

For example, consider the above data structure.
After the data structure is packed into a buffer, the
buffer will contain the following:

tagl, 5, 12
tagb, 5

tag2, 1, 3, 4
tagb, 6, 6

tag4, 13, 6
tag?, 9, -4

tag3, 8

Since this approach modifies the mark field of
the traversing node, no other threads can concur-
rently pack the graph. However, the graph is still
available for read access by other threads.

2.3 Recursion removal: pointer re-
versal

Conventional graph traversal may be simply pro-
grammed using recursion. However, this uses
an amount of stack space proportional to the
maximum depth of the graph. This could be large

www.manaraa.com

in the case of, for example, a linked list. An
alternate approach to using recursion is to use
pointer reversal. This approach allows iterative
traversal of an arbitrary graph, in constant space.
During graph traversal, we flip pointer references
to point back to previous nodes. These ‘back
pointers’ direct the traversal back to previous
nodes when the traversal needs to return to them.
The following diagram shows the pointers in the
traversal of a simple data structure using pointer
reversal:

Befare traversing

Aftertraversed fromA toBto C

Figure 2: Pointer reversal traversing.

Since the links between nodes are changed
during the packing, the entire graph structure is
changed, hence the graph should be locked and no
other threads can have read access to the graph
during packing.

2.4 Technique II: index table

Packing and unpacking with the aid of an index
table is the most traditional approach to graph
packing. It has the lowest efficiency and highest
overhead due to the extra index table required. In
our approach, the index table serves two purpose.
First, it indicates whether a node has been reached
before during the traversal. Second, it gives the
reference to the pointers relocation when the graph
is being unpacked. During the traversal, we pack
into the buffer each node’s address, tag and data
items. Also we write to the index table the current
nodes’ address and pointers; thus the index table
stores node linkage information. This is required
as pointer relocation information for the receiver
process to rebuild the graph structure. The index
table has the form:

| current-address | referencing-address |

When the graph is rebuilt, first we recreate
allvthepnodesyofithepgraphwaccording to the nodes

informations in the buffer. Then we link all the
nodes of the graph according to the information in
the index table.

Taking the data structure of Figure 1 as an
example, after the packing, we have the following
byte stream inside the buffer:

Nladr, tagl, 5, 12
N4adr, tag4, 13, 6
Nbadr, tagh, 5
N7adr, tag7, 9

N2adr, tag2, 1, 3, 4
N3adr, tag3, 8
Néadr, tags6, 6, 6

The index table contains all the node reference
pairs for relocation of pointers during graph recon-
struction.

Niladr | N2adr
Niladr | N3adr
N2adr | N4dadr
N3adr | Nbadr
N3adr | N6adr
N6adr | N7adr
N6adr | N3adr

The buffer and index table can be combined or
sent separately to the destination processor.

The size of data which must be communicated
is much larger than for the node marking
technique. For an arbitrary graph that has
arbitrary edges per node, this difference is hard
to estimate. However, if there are N nodes in the
graph, and each node of the graph has L edges
to other nodes, then the difference between the
data size of this approach and the node marking
approach will be:

packed data difference + size of index table
= N * address size + 2 * N * L * address size
= N * address size * (2L + 1)

This size directly affects the size of the pre-
allocated I/O buffer required and the transfer time
required.

The index table lookup time is also a large over-
head during the packing and unpacking processes.
To optimise this, three different implementations of
index tables were tried. The first implementation
uses a simple linked-list as an index table. The
linked-list table has a small lookup time overhead
when the size of the data structure to pack is
small. The second implementation uses a m-way
tree as index table. This m-way tree is constructed
as tries and spends an almost constant time on
each table lookup, and is independent of the data
structure size. The third implementation uses
a hash table as index table [7]. Tt uses simple
mathematical functions to perform the lookup. In
our implementation, we use simple double hashing
to perform insertion and lookup. Rehashing can be
implemented if the size of graphs to be packed is
very large. However, the rehashing introduces an
extra time overhead to the packing. To avoid this,

www.manaraa.com

it is advantageous to know the size of the graph to
be packed a priori so that an appropriate size of
hash table can be pre-allocated.

The linked-list implementation of an index ta-
ble has a size directly proportional to the number
of nodes(N) and links(L) per node. If all nodes
have same number of links to other nodes, the size
of the index table can be calculated by:

3*¥ N * L * address size

By the same assumption, and to guarantee less
than 60% population, the the hash table should be
larger than 1.5 * N and the total index table size
will be:

3N * (1 4+ L) * address size

3 Mini-heap ADTs

Any data structure in memory can be communi-
cated to a compatible machine by simply sending
its entire memory area. The receiver must store
this stream of data at the same memory address to
guarantee that pointers are valid. Usually this is
an inappropriate approach because data structures
will be distributed over a large memory area and
sending this entire area would be very wasteful in
terms of time and space.

In our approach we assume that we can main-
tain an identical address space of the communicat-
ing memory block between the sender and receiver
process. With this assumption, the receiver pro-
cess can dereference the pointers correctly. Assum-
ing a SPMD programming model, homogeneous
machines and static linking, program code and
data segments will be located at the same locations
in virtual memory. Thus we may partition virtual
memory between processors. By partitioning vir-
tual memory across processors we can guarantee
that a receiver can store a block of memory at the
same address as the sender, and physical memory is
not wasted by partitioning across machines. This
is achieved by allocating a large amount of virtual
memory at the beginning of program initialisation
and partitioning it into several mini-heaps. Thus,
we can have the virtual address space of ith mini-
heap of the sender process identical to the virtual
address space of the ith mini-heap of the receiver
process.

To address the problem of data distributed over
a large area within the memory, we restrict each
mini-heap to represent a single data structure and
to store only one type of data. Thus each mini-
heap can be further partitioned into a number of
equal size storage elements, thereby simplifying
storage management.

The mini-heap ADT uses a free list to manage
storage elements. When an allocation of memory
for this type arises, the mini-heap ADT finds the

Process

Process
P2 |

P2 virtual Memary

Hea
rth mini-heag lHeap 1 nth mini-heagp ‘1‘

Figure 3: Communication of a mini-heap.

P1 Wirtual Memary

[list | data|ned]] dstanesd]

mini-heap

Figure 4: Build data into mini-heap.

first free storage element from the free list. Then
it allocates this storage element to the variable
that raised the request. In order to free elements
a garbage collector is required and to maintain
compaction this should be a compacting collec-
tor. (This was not implemented.) Clearly more
sophisticated storage management is possible, for
example mini-heaps could be chained together etc.
Currently, a explicit dispose element function is
implemented for simple management; the freed
element will be returned to the free list.

4 Results and comparison

So far we have introduced five different pack-
ing/unpacking techniques and a mini-heap ADT.
To carry out the performance tests, we used
these techniques to pack and unpack data struc-
tures of different behaviour. The mini-heap ADT
was 1mplemented but not compared with the
packing/unpacking approaches; because its perfor-
mance 1s application dependent: see Section 5.

The test programs were written in Oberon, an
OO language in the Pascal family, and compiled
using a local Oberon compiler (Gardens Point
Oberon). The platform was a Sun SPARCstation
4 with 32MB of memory, under Solaris 2.5.

There are some basic time overheads for the
five packing /unpacking approaches. The identified
basic time overheads are:

1. The reset of node marks in the node marking
approach. The node marks must be reset after
each packing operation, so that subsequent

www.manaraa.com

packing operations will not be affected. This
reset requires another traversal of the graph.
So the overhead is approximately half of the
packing time.

2. The initialisation of the index table. This
overheads can be measured by packing an
empty graph. The overhead is negligible on
the linked-list and m-way tree table imple-
mentation, but is significant on the hash table
implementation. A fixed size hash table can
eliminate this overhead.

To compare the performance of the five pack-
ing/unpacking approaches, we packed and un-
packed data structures of different sizes and topolo-
gies. The data structures we used were: simple
linked-lists, m-way trees, and graphs with various
topologies. The chart in Figure 5 shows the
timing results of packing a 8-way tree with the five
approaches. This set of results is chosen because
it is representative of all the results obtained.

12[_][_]
linked-list table
1000
treg-table

milliseconds
(2]
i
[l

P In
= =
=} =
=
I
o
=0
—
I
[=3
i

pointer reversal

0 Trark node

50 100 200 500 1000
no. of nodes in graph

Figure 5: Time required to traverse a graph with 8
outgoing edges per node.

4.1 Node marking: recursive vs

pointer reversal

Theoretically, by saving on procedure calls, the
pointer reversal approach should have less time
overhead than the recursive node marking ap-
proach. However from the chart shown in Fig-
ure 5 we can see that the time overhead of the
node marking and pointer reversal approaches are
almost the same. This is because the pointer
reversal approach needs to perform more pointer
manipulations than the recursive approach, which
introduces time overheads that compensate for
procedure calling. Both of these approaches have
a linear and gently increasing time overhead with
respect to the increasing graph size; since there is
no table lookup operation, which may cause the
polynomial time overhead behaviour as with the
index table approach.

4.2 Thread safe approaches

The linked-list index table implementation has a
low time overhead when the size of the packing
graph is small, and is comparable to the node
marking and pointer reversal techniques. However,
this time overhead increases rapidly as the graph
size becomes large: O(n?). The hash index
table implementation has the largest initial time
overhead among the three thread safe approaches.
It increases gently as the graph size increases and
is good to use if the graph size is large. The char-
acteristic of the tree index table implementation is
O(n log n} which falls between that of the linked-
list and hash index table implementation.

As mentioned before, the node marking and
pointer reversal approaches are thread unsafe
because they modify the data structure during
the packing operation. These two approaches,
however; have the lowest time overhead among
the packing approaches. The only thread safe
approach that has time overhead close to these
two for large graph sizes is the hash index table
implementation.

A characteristic of the hash index table imple-
mentation is its time overhead is affected by the
population of the hash table. If the hash table
is fully populated, the lookup overhead may be
increased due to the fact that secondary hash is
required when there is collision on primary hash,
and the lookup overhead may become O(n?). So it
1s necessary to carefully adjust the size of the hash
table to minimise this extra time overhead.

5 Conclusions

The performance tests show that for packing and
unpacking using a node marking technique 1s far
more efficient than using an index table. However
it has the shortcoming of not being thread safe
because it modifies the node marks during the
graph traversal. It is also necessary to reset the
node marks to zero before the next traversal of the
graph.

Although the index table approach has the
lowest efficiency and highest overhead, it does
have the advantage of being thread safe because
it does not modify any field of any node in the
graph. It is safe in the sense that it does not cause
inconsistency to other processes reading the data
structure. Also the performance tests show that
most of the time overhead is index table lookups
to determine whether a node has been reached
This overhead is directly related to the
implementation of the index table.

The pointer reversal traversing approach saves
stack space allocated during the traversal of a
graph; however, it modifies pointers as it traverses
through the graph, therefore it is also not thread

before.

www.manaraa.com

safe. It can be used together with the node
marking approach. We did not use it with the
index table approach because we do not want to
give up the thread safe behaviour of the index table
approach.

The performance of the mini-heap approach
is algorithm dependent. The frequency of an
algorithms allocation and deallocation will deter-
mine how fragmented the mini-heaps will become
and hence how efficient this approach will be.
This approach addresses the problem in a simple
manner and can sometimes provide an efficient
transfer of large complex data structure. The
restriction is it can be used only on homogeneous
platforms.

Each of the approaches studied in this paper
has its advantages and disadvantages. An impor-
tant criteria is whether thread safety is required; if
not an efficient packing algorithm can use pointer
reversal and node marking. Where thread safety
is required the index table represents the greatest
source of inefficiency; further work is required in
order to optimise this. Mini-heap ADTs can in
some cases provide an efficient implementation,
but this 1s rather application dependent. In
particular it depends on the nature of the data
structures used in the application. If graph nodes
are infrequently allocated and deallocated with
respect to the frequency of graph communication
it may be a useful approach.

For the Gardens project it is hoped to use some
of these techniques for generic object communica-
tion.

Acknowledgements

We would like to thank the anonymous referees
for their comments on an earlier draft of this paper.
This study has been supported by the Gardens
research project at QUT.

References

[1] J Boykin, D Kirschen, A Langerman, and
S Loverso. Programming Under Mach, chap-
ter 3, pages 63-97. Addison-Wesley, 1993.

[2] J R Corbin. Sun technical reference library. In
The Art of Distributed Applications: Program-
ming Techniques for Remote Procedure Calls,
chapter A2.3, pages 262-274. Springer-Verlag,
1990.

[3] J Diederich, J Gough, G Mohay, and C Szyper-
ski. The Gardens Project—an introduction.
In Australasian Computer Architecture Work-

shop, Adelaide, January 1995.

[4] R Griesemer. On the linearization of graphs
and writing symbol files.

ETH, Zurich, March 1991.

Technical report,

[5]

[6]

R C Holt, P A Matthews, J A Rosselet, and
J R Cordy. The Turing Language: Design and
Definition. Prentice Hall, 1987.

J N Newcomer. Efficient Binary I/O of IDL
Objects. ACM SIGPLAN Notices, 22(11):35—
43, November 1987.

R Sedgewick. Algorithms in Modula-3, chap-
ter 16, pages 231-244. Addison-Wesley, 1993.

I Toyn and A Dix. Efficient binary transfer
of pointer structures. Software Practice and
Ezperience, 24(1), November 1994.

www.manaraa.com

