
www.manaraa.com

Communication of Complex Data StructuresSiu-Yuen Chan Paul RoeSchool of Computing Science School of Computing ScienceQueensland University of Technology Queensland University of TechnologyBrisbane, Queensland, 4001 Brisbane, Queensland, 4001Australia Australiasi.chan@student.qut.edu.au p.roe@qut.edu.auAbstractCommunicating complex data structures, that isthose containing pointers, across machines is acommon problem in distributed and parallel com-puting; particularly with the current move towardsobject-oriented programming. Some techniquesutilise dedicated hardware and system software toe�ciently achieve this. This paper presents a studyof several software techniques for the communica-tion of complex data structures. A selection ofpacking/unpacking techniques are tried and com-pared; in addition a mini-heap ADT, requiring nopacking or unpacking, is studied.1 IntroductionParallel computing is currently a hot topic incomputing. The basic driving force of parallelcomputing is the desire and prospect for increasedperformance over conventional sequential comput-ing. Of particular interest to us is networkbased parallel computing and the idea of creatinga virtual supercomputer from networks of idleworkstations [3].Over the past decade the development of par-allel computing has shifted from processors withphysical shared memory to machines with dis-tributed memories. Shared memory as an inter-processor communication technique is not directlysupported by distributed memory machines. In-stead, distributed shared memory (DSM), whichis the abstraction of shared memory on multi-computer architectures, has been developed forparallel systems of this type. However, generallyDSM requires hardware, specialised OS support orat least a homogeneous collection of processors;none of which are available for our virtual super-computer.Message-passing is another common interpro-cessor communication technique and is naturallysupported by distributed memory machines. Sundeveloped XDR to communicate commonly usedsimple and structured data types in RPC[2]. TheMach distributed operating system tags each itemof data in a message with its type [1]. How-

ever, neither of these message passing systemsdirectly support the communication of complexdata structures containing pointers. This paperinvestigates high level message-passing, in particu-lar the tradeo�s involved in di�erent techniques forcommunicating complex data structures contain-ing pointers. This is becoming increasingly neces-sary with the move towards object-oriented(OO)parallel programming: objects by their very natureutilise pointers. Several other researchers haveinvestigated this tricky problem including Toyn[8]and Newcomer[6]. The e�ciency of Toyn's binarytransfer relies on the existence of copying garbagecollector. Newcomer's algorithm was designed forIDL objects running on distributed systems. Ourinvestigations seek general solutions for the com-munication of complex data structures for parallel,rather than distributed, computing.There are two basic issues involved in the com-munication of complex data structures containingpointers:1. compaction of data for e�cient communica-tion and2. relocation of data (pointers).Typically it is much more e�cient to commu-nicate a block of contiguous memory between pro-cessors than to communicate multiple fragmentsof memory: for example as separate communica-tions. Basic data types, arrays and records havea contiguous representation in memory and arerelocatable (providing they contain no pointers).However, usually complex data types such as linkedlists are incrementally constructed and hence arenot contiguously allocated in memory. They alsocontain pointers which typically will not be validon the destination processor.The techniques investigated address these is-sues in di�erent ways. The most straightforwardtechnique is to pack data on communication intoa bu�er and simultaneously compute relocationinformation. The bu�er and relocation informa-tion are communicated. On receipt the data isunpacked and relocation information is used to



www.manaraa.com

reallocate data at di�erent locations in memory.We term this technique packing/unpacking; severalvariations of this are investigated in the followingsection.An alternative technique is to build and main-tain data in a compact and relocatable form; themini-heap ADT, described in Section 3 implementsthis. The system implement the managementof a number of mini-heaps, into which complexdata to be communicated is built. It is similarto the collection of the Euclid and Turing [5]programming languages. When a communicationrequest is raised, the whole block of mini-heap datacan be directly communicated. This is restrictedto communication across homogeneous machines.2 Packing and unpackingTo generalise packing and unpacking, �rst weassume all complex data structures containingpointers can be represented by a directed graph.Secondly, we consider only rooted, connected and�nite graphs. Under these assumptions, the nodesof a graph represent data records and the edges ofa graph denote the pointers that reference thoserecords. To be more general, a graph may containdi�erent types of nodes, i.e. each node of thegraph may contain di�erent types of data and havedi�erent number of pointers to other nodes of thegraph. To achieve this, a tag is given to each nodeof the graph to distinguish its node type. All theimplementations discussed in the following sectionsare based on these assumptions.2.1 Thread safetyThread safety is an important issue when consid-ering di�erent approaches to communicating com-plex data structures. Di�erent packing/unpackingapproaches support di�erent levels of concurrency,and require di�erent locking strategies. A min-imum requirement is that no thread writes to agraph while another thread packs the graph. Weclassify the concurrency of access to the graph tobe packed thus:1. There is no change to the graph, other threadscan read or pack the graph.2. Other threads can read, but not pack, thegraph. (This requires an additional mode oflocking for graphs: `being-packed'.)3. No other threads can access the graph whileit is being packed.2.2 Technique I: node markingThe �rst approach that we used was to pack andunpack graphs based on the technique describedby Griesemer [4]. In this approach, a bu�er is

used to accumulate the packed graph and a mark isgiven as an extra �eld to each node in the graph.The graph is traversed and packed into a bu�erfor transmission. The purpose of node marks areto mark whether nodes have been reached beforein the traversal, and if so at what point in thetraversal they were �rst encountered. All thenode marks are initialised to zero. During graphtraversal, nodes or references to previously packednodes are written into the bu�er. If it is the�rst time that a node is reached, its tag and datavalues are written to the bu�er. Also the traversalsequence number is written to the mark of the nodein the graph. If the node has been reached before(its mark is non-zero) the negative value of themark is written to the bu�er: denoting a referenceto a previous node in the bu�er. When a graphis rebuilt, graph nodes are recreated according tonodes' tag values. If a negative value appears afterall the data items of a node, we know this node hasa reference to a previously created node.
Figure 1: Example graph data structure.For example, consider the above data structure.After the data structure is packed into a bu�er, thebu�er will contain the following:tag1, 5, 12 tag2, 1, 3, 4 tag4, 13, 6 tag3, 8tag5, 5 tag6, 6, 6 tag7, 9, -4Since this approach modi�es the mark �eld ofthe traversing node, no other threads can concur-rently pack the graph. However, the graph is stillavailable for read access by other threads.2.3 Recursion removal: pointer re-versalConventional graph traversal may be simply pro-grammed using recursion. However, this usesan amount of stack space proportional to themaximumdepth of the graph. This could be large



www.manaraa.com

in the case of, for example, a linked list. Analternate approach to using recursion is to usepointer reversal. This approach allows iterativetraversal of an arbitrary graph, in constant space.During graph traversal, we ip pointer referencesto point back to previous nodes. These `backpointers' direct the traversal back to previousnodes when the traversal needs to return to them.The following diagram shows the pointers in thetraversal of a simple data structure using pointerreversal:
Figure 2: Pointer reversal traversing.Since the links between nodes are changedduring the packing, the entire graph structure ischanged, hence the graph should be locked and noother threads can have read access to the graphduring packing.2.4 Technique II: index tablePacking and unpacking with the aid of an indextable is the most traditional approach to graphpacking. It has the lowest e�ciency and highestoverhead due to the extra index table required. Inour approach, the index table serves two purpose.First, it indicates whether a node has been reachedbefore during the traversal. Second, it gives thereference to the pointers relocation when the graphis being unpacked. During the traversal, we packinto the bu�er each node's address, tag and dataitems. Also we write to the index table the currentnodes' address and pointers; thus the index tablestores node linkage information. This is requiredas pointer relocation information for the receiverprocess to rebuild the graph structure. The indextable has the form:current-address referencing-addressWhen the graph is rebuilt, �rst we recreateall the nodes of the graph according to the nodes

informations in the bu�er. Then we link all thenodes of the graph according to the information inthe index table.Taking the data structure of Figure 1 as anexample, after the packing, we have the followingbyte stream inside the bu�er:N1adr, tag1, 5, 12 N2adr, tag2, 1, 3, 4N4adr, tag4, 13, 6 N3adr, tag3, 8N5adr, tag5, 5 N6adr, tag6, 6, 6N7adr, tag7, 9The index table contains all the node referencepairs for relocation of pointers during graph recon-struction. N1adr N2adrN1adr N3adrN2adr N4adrN3adr N5adrN3adr N6adrN6adr N7adrN6adr N3adrThe bu�er and index table can be combined orsent separately to the destination processor.The size of data which must be communicatedis much larger than for the node markingtechnique. For an arbitrary graph that hasarbitrary edges per node, this di�erence is hardto estimate. However, if there are N nodes in thegraph, and each node of the graph has L edgesto other nodes, then the di�erence between thedata size of this approach and the node markingapproach will be:packed data di�erence + size of index table= N * address size + 2 * N * L * address size= N * address size * (2L + 1)This size directly a�ects the size of the pre-allocated I/O bu�er required and the transfer timerequired.The index table lookup time is also a large over-head during the packing and unpacking processes.To optimise this, three di�erent implementations ofindex tables were tried. The �rst implementationuses a simple linked-list as an index table. Thelinked-list table has a small lookup time overheadwhen the size of the data structure to pack issmall. The second implementation uses a m-waytree as index table. This m-way tree is constructedas tries and spends an almost constant time oneach table lookup, and is independent of the datastructure size. The third implementation usesa hash table as index table [7]. It uses simplemathematical functions to perform the lookup. Inour implementation, we use simple double hashingto perform insertion and lookup. Rehashing can beimplemented if the size of graphs to be packed isvery large. However, the rehashing introduces anextra time overhead to the packing. To avoid this,



www.manaraa.com

it is advantageous to know the size of the graph tobe packed a priori so that an appropriate size ofhash table can be pre-allocated.The linked-list implementation of an index ta-ble has a size directly proportional to the numberof nodes(N) and links(L) per node. If all nodeshave same number of links to other nodes, the sizeof the index table can be calculated by:3 * N * L * address sizeBy the same assumption, and to guarantee lessthan 60% population, the the hash table should belarger than 1.5 * N and the total index table sizewill be: 3N * (1 + L) * address size3 Mini-heap ADTsAny data structure in memory can be communi-cated to a compatible machine by simply sendingits entire memory area. The receiver must storethis stream of data at the same memory address toguarantee that pointers are valid. Usually this isan inappropriate approach because data structureswill be distributed over a large memory area andsending this entire area would be very wasteful interms of time and space.In our approach we assume that we can main-tain an identical address space of the communicat-ing memory block between the sender and receiverprocess. With this assumption, the receiver pro-cess can dereference the pointers correctly. Assum-ing a SPMD programming model, homogeneousmachines and static linking, program code anddata segments will be located at the same locationsin virtual memory. Thus we may partition virtualmemory between processors. By partitioning vir-tual memory across processors we can guaranteethat a receiver can store a block of memory at thesame address as the sender, and physical memory isnot wasted by partitioning across machines. Thisis achieved by allocating a large amount of virtualmemory at the beginning of program initialisationand partitioning it into several mini-heaps. Thus,we can have the virtual address space of ith mini-heap of the sender process identical to the virtualaddress space of the ith mini-heap of the receiverprocess.To address the problem of data distributed overa large area within the memory, we restrict eachmini-heap to represent a single data structure andto store only one type of data. Thus each mini-heap can be further partitioned into a number ofequal size storage elements, thereby simplifyingstorage management.The mini-heap ADT uses a free list to managestorage elements. When an allocation of memoryfor this type arises, the mini-heap ADT �nds the

Figure 3: Communication of a mini-heap.
Figure 4: Build data into mini-heap.�rst free storage element from the free list. Thenit allocates this storage element to the variablethat raised the request. In order to free elementsa garbage collector is required and to maintaincompaction this should be a compacting collec-tor. (This was not implemented.) Clearly moresophisticated storage management is possible, forexample mini-heaps could be chained together etc.Currently, a explicit dispose element function isimplemented for simple management; the freedelement will be returned to the free list.4 Results and comparisonSo far we have introduced �ve di�erent pack-ing/unpacking techniques and a mini-heap ADT.To carry out the performance tests, we usedthese techniques to pack and unpack data struc-tures of di�erent behaviour. The mini-heap ADTwas implemented but not compared with thepacking/unpacking approaches, because its perfor-mance is application dependent: see Section 5.The test programs were written in Oberon, anOO language in the Pascal family, and compiledusing a local Oberon compiler (Gardens PointOberon). The platform was a Sun SPARCstation4 with 32MB of memory, under Solaris 2.5.There are some basic time overheads for the�ve packing/unpacking approaches. The identi�edbasic time overheads are:1. The reset of node marks in the node markingapproach. The node marks must be reset aftereach packing operation, so that subsequent



www.manaraa.com

packing operations will not be a�ected. Thisreset requires another traversal of the graph.So the overhead is approximately half of thepacking time.2. The initialisation of the index table. Thisoverheads can be measured by packing anempty graph. The overhead is negligible onthe linked-list and m-way tree table imple-mentation, but is signi�cant on the hash tableimplementation. A �xed size hash table caneliminate this overhead.To compare the performance of the �ve pack-ing/unpacking approaches, we packed and un-packed data structures of di�erent sizes and topolo-gies. The data structures we used were: simplelinked-lists, m-way trees, and graphs with varioustopologies. The chart in Figure 5 shows thetiming results of packing a 8-way tree with the �veapproaches. This set of results is chosen becauseit is representative of all the results obtained.
Figure 5: Time required to traverse a graph with 8outgoing edges per node.4.1 Node marking: recursive vspointer reversalTheoretically, by saving on procedure calls, thepointer reversal approach should have less timeoverhead than the recursive node marking ap-proach. However from the chart shown in Fig-ure 5 we can see that the time overhead of thenode marking and pointer reversal approaches arealmost the same. This is because the pointerreversal approach needs to perform more pointermanipulations than the recursive approach, whichintroduces time overheads that compensate forprocedure calling. Both of these approaches havea linear and gently increasing time overhead withrespect to the increasing graph size; since there isno table lookup operation, which may cause thepolynomial time overhead behaviour as with theindex table approach.

4.2 Thread safe approachesThe linked-list index table implementation has alow time overhead when the size of the packinggraph is small, and is comparable to the nodemarking and pointer reversal techniques. However,this time overhead increases rapidly as the graphsize becomes large: O(n2). The hash indextable implementation has the largest initial timeoverhead among the three thread safe approaches.It increases gently as the graph size increases andis good to use if the graph size is large. The char-acteristic of the tree index table implementation isO(n log n) which falls between that of the linked-list and hash index table implementation.As mentioned before, the node marking andpointer reversal approaches are thread unsafebecause they modify the data structure duringthe packing operation. These two approaches,however, have the lowest time overhead amongthe packing approaches. The only thread safeapproach that has time overhead close to thesetwo for large graph sizes is the hash index tableimplementation.A characteristic of the hash index table imple-mentation is its time overhead is a�ected by thepopulation of the hash table. If the hash tableis fully populated, the lookup overhead may beincreased due to the fact that secondary hash isrequired when there is collision on primary hash,and the lookup overhead may become O(n2). So itis necessary to carefully adjust the size of the hashtable to minimise this extra time overhead.5 ConclusionsThe performance tests show that for packing andunpacking using a node marking technique is farmore e�cient than using an index table. Howeverit has the shortcoming of not being thread safebecause it modi�es the node marks during thegraph traversal. It is also necessary to reset thenode marks to zero before the next traversal of thegraph.Although the index table approach has thelowest e�ciency and highest overhead, it doeshave the advantage of being thread safe becauseit does not modify any �eld of any node in thegraph. It is safe in the sense that it does not causeinconsistency to other processes reading the datastructure. Also the performance tests show thatmost of the time overhead is index table lookupsto determine whether a node has been reachedbefore. This overhead is directly related to theimplementation of the index table.The pointer reversal traversing approach savesstack space allocated during the traversal of agraph; however, it modi�es pointers as it traversesthrough the graph, therefore it is also not thread



www.manaraa.com

safe. It can be used together with the nodemarking approach. We did not use it with theindex table approach because we do not want togive up the thread safe behaviour of the index tableapproach.The performance of the mini-heap approachis algorithm dependent. The frequency of analgorithms allocation and deallocation will deter-mine how fragmented the mini-heaps will becomeand hence how e�cient this approach will be.This approach addresses the problem in a simplemanner and can sometimes provide an e�cienttransfer of large complex data structure. Therestriction is it can be used only on homogeneousplatforms.Each of the approaches studied in this paperhas its advantages and disadvantages. An impor-tant criteria is whether thread safety is required; ifnot an e�cient packing algorithm can use pointerreversal and node marking. Where thread safetyis required the index table represents the greatestsource of ine�ciency; further work is required inorder to optimise this. Mini-heap ADTs can insome cases provide an e�cient implementation,but this is rather application dependent. Inparticular it depends on the nature of the datastructures used in the application. If graph nodesare infrequently allocated and deallocated withrespect to the frequency of graph communicationit may be a useful approach.For the Gardens project it is hoped to use someof these techniques for generic object communica-tion.AcknowledgementsWe would like to thank the anonymous refereesfor their comments on an earlier draft of this paper.This study has been supported by the Gardensresearch project at QUT.References[1] J Boykin, D Kirschen, A Langerman, andS Loverso. Programming Under Mach, chap-ter 3, pages 63{97. Addison-Wesley, 1993.[2] J R Corbin. Sun technical reference library. InThe Art of Distributed Applications: Program-ming Techniques for Remote Procedure Calls,chapter A2.3, pages 262{274. Springer-Verlag,1990.[3] J Diederich, J Gough, G Mohay, and C Szyper-ski. The Gardens Project|an introduction.In Australasian Computer Architecture Work-shop, Adelaide, January 1995.[4] R Griesemer. On the linearization of graphsand writing symbol �les. Technical report,ETH, Zurich, March 1991.

[5] R C Holt, P A Matthews, J A Rosselet, andJ R Cordy. The Turing Language: Design andDe�nition. Prentice Hall, 1987.[6] J N Newcomer. E�cient Binary I/O of IDLObjects. ACM SIGPLAN Notices, 22(11):35{43, November 1987.[7] R Sedgewick. Algorithms in Modula-3, chap-ter 16, pages 231{244. Addison-Wesley, 1993.[8] I Toyn and A Dix. E�cient binary transferof pointer structures. Software Practice andExperience, 24(1), November 1994.


